Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(0, y) → 0
minus(s(x), y) → if_minus(le(s(x), y), s(x), y)
if_minus(true, s(x), y) → 0
if_minus(false, s(x), y) → s(minus(x, y))
gcd(0, y) → y
gcd(s(x), 0) → s(x)
gcd(s(x), s(y)) → if_gcd(le(y, x), s(x), s(y))
if_gcd(true, s(x), s(y)) → gcd(minus(x, y), s(y))
if_gcd(false, s(x), s(y)) → gcd(minus(y, x), s(x))

Q is empty.


QTRS
  ↳ Overlay + Local Confluence

Q restricted rewrite system:
The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(0, y) → 0
minus(s(x), y) → if_minus(le(s(x), y), s(x), y)
if_minus(true, s(x), y) → 0
if_minus(false, s(x), y) → s(minus(x, y))
gcd(0, y) → y
gcd(s(x), 0) → s(x)
gcd(s(x), s(y)) → if_gcd(le(y, x), s(x), s(y))
if_gcd(true, s(x), s(y)) → gcd(minus(x, y), s(y))
if_gcd(false, s(x), s(y)) → gcd(minus(y, x), s(x))

Q is empty.

The TRS is overlay and locally confluent. By [15] we can switch to innermost.

↳ QTRS
  ↳ Overlay + Local Confluence
QTRS
      ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(0, y) → 0
minus(s(x), y) → if_minus(le(s(x), y), s(x), y)
if_minus(true, s(x), y) → 0
if_minus(false, s(x), y) → s(minus(x, y))
gcd(0, y) → y
gcd(s(x), 0) → s(x)
gcd(s(x), s(y)) → if_gcd(le(y, x), s(x), s(y))
if_gcd(true, s(x), s(y)) → gcd(minus(x, y), s(y))
if_gcd(false, s(x), s(y)) → gcd(minus(y, x), s(x))

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(0, x0)
minus(s(x0), x1)
if_minus(true, s(x0), x1)
if_minus(false, s(x0), x1)
gcd(0, x0)
gcd(s(x0), 0)
gcd(s(x0), s(x1))
if_gcd(true, s(x0), s(x1))
if_gcd(false, s(x0), s(x1))


Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

IF_GCD(false, s(x), s(y)) → GCD(minus(y, x), s(x))
MINUS(s(x), y) → IF_MINUS(le(s(x), y), s(x), y)
IF_GCD(true, s(x), s(y)) → MINUS(x, y)
MINUS(s(x), y) → LE(s(x), y)
LE(s(x), s(y)) → LE(x, y)
GCD(s(x), s(y)) → LE(y, x)
IF_GCD(true, s(x), s(y)) → GCD(minus(x, y), s(y))
GCD(s(x), s(y)) → IF_GCD(le(y, x), s(x), s(y))
IF_MINUS(false, s(x), y) → MINUS(x, y)
IF_GCD(false, s(x), s(y)) → MINUS(y, x)

The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(0, y) → 0
minus(s(x), y) → if_minus(le(s(x), y), s(x), y)
if_minus(true, s(x), y) → 0
if_minus(false, s(x), y) → s(minus(x, y))
gcd(0, y) → y
gcd(s(x), 0) → s(x)
gcd(s(x), s(y)) → if_gcd(le(y, x), s(x), s(y))
if_gcd(true, s(x), s(y)) → gcd(minus(x, y), s(y))
if_gcd(false, s(x), s(y)) → gcd(minus(y, x), s(x))

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(0, x0)
minus(s(x0), x1)
if_minus(true, s(x0), x1)
if_minus(false, s(x0), x1)
gcd(0, x0)
gcd(s(x0), 0)
gcd(s(x0), s(x1))
if_gcd(true, s(x0), s(x1))
if_gcd(false, s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
QDP
          ↳ EdgeDeletionProof

Q DP problem:
The TRS P consists of the following rules:

IF_GCD(false, s(x), s(y)) → GCD(minus(y, x), s(x))
MINUS(s(x), y) → IF_MINUS(le(s(x), y), s(x), y)
IF_GCD(true, s(x), s(y)) → MINUS(x, y)
MINUS(s(x), y) → LE(s(x), y)
LE(s(x), s(y)) → LE(x, y)
GCD(s(x), s(y)) → LE(y, x)
IF_GCD(true, s(x), s(y)) → GCD(minus(x, y), s(y))
GCD(s(x), s(y)) → IF_GCD(le(y, x), s(x), s(y))
IF_MINUS(false, s(x), y) → MINUS(x, y)
IF_GCD(false, s(x), s(y)) → MINUS(y, x)

The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(0, y) → 0
minus(s(x), y) → if_minus(le(s(x), y), s(x), y)
if_minus(true, s(x), y) → 0
if_minus(false, s(x), y) → s(minus(x, y))
gcd(0, y) → y
gcd(s(x), 0) → s(x)
gcd(s(x), s(y)) → if_gcd(le(y, x), s(x), s(y))
if_gcd(true, s(x), s(y)) → gcd(minus(x, y), s(y))
if_gcd(false, s(x), s(y)) → gcd(minus(y, x), s(x))

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(0, x0)
minus(s(x0), x1)
if_minus(true, s(x0), x1)
if_minus(false, s(x0), x1)
gcd(0, x0)
gcd(s(x0), 0)
gcd(s(x0), s(x1))
if_gcd(true, s(x0), s(x1))
if_gcd(false, s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted some edges using various graph approximations

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
QDP
              ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

MINUS(s(x), y) → IF_MINUS(le(s(x), y), s(x), y)
IF_GCD(false, s(x), s(y)) → GCD(minus(y, x), s(x))
IF_GCD(true, s(x), s(y)) → MINUS(x, y)
MINUS(s(x), y) → LE(s(x), y)
LE(s(x), s(y)) → LE(x, y)
GCD(s(x), s(y)) → LE(y, x)
IF_GCD(true, s(x), s(y)) → GCD(minus(x, y), s(y))
IF_MINUS(false, s(x), y) → MINUS(x, y)
GCD(s(x), s(y)) → IF_GCD(le(y, x), s(x), s(y))
IF_GCD(false, s(x), s(y)) → MINUS(y, x)

The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(0, y) → 0
minus(s(x), y) → if_minus(le(s(x), y), s(x), y)
if_minus(true, s(x), y) → 0
if_minus(false, s(x), y) → s(minus(x, y))
gcd(0, y) → y
gcd(s(x), 0) → s(x)
gcd(s(x), s(y)) → if_gcd(le(y, x), s(x), s(y))
if_gcd(true, s(x), s(y)) → gcd(minus(x, y), s(y))
if_gcd(false, s(x), s(y)) → gcd(minus(y, x), s(x))

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(0, x0)
minus(s(x0), x1)
if_minus(true, s(x0), x1)
if_minus(false, s(x0), x1)
gcd(0, x0)
gcd(s(x0), 0)
gcd(s(x0), s(x1))
if_gcd(true, s(x0), s(x1))
if_gcd(false, s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 3 SCCs with 4 less nodes.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
QDP
                    ↳ QDPOrderProof
                  ↳ QDP
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LE(s(x), s(y)) → LE(x, y)

The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(0, y) → 0
minus(s(x), y) → if_minus(le(s(x), y), s(x), y)
if_minus(true, s(x), y) → 0
if_minus(false, s(x), y) → s(minus(x, y))
gcd(0, y) → y
gcd(s(x), 0) → s(x)
gcd(s(x), s(y)) → if_gcd(le(y, x), s(x), s(y))
if_gcd(true, s(x), s(y)) → gcd(minus(x, y), s(y))
if_gcd(false, s(x), s(y)) → gcd(minus(y, x), s(x))

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(0, x0)
minus(s(x0), x1)
if_minus(true, s(x0), x1)
if_minus(false, s(x0), x1)
gcd(0, x0)
gcd(s(x0), 0)
gcd(s(x0), s(x1))
if_gcd(true, s(x0), s(x1))
if_gcd(false, s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


LE(s(x), s(y)) → LE(x, y)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
LE(x1, x2)  =  LE(x1)
s(x1)  =  s(x1)

Recursive path order with status [2].
Quasi-Precedence:
[LE1, s1]

Status:
LE1: multiset
s1: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof
                  ↳ QDP
                  ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(0, y) → 0
minus(s(x), y) → if_minus(le(s(x), y), s(x), y)
if_minus(true, s(x), y) → 0
if_minus(false, s(x), y) → s(minus(x, y))
gcd(0, y) → y
gcd(s(x), 0) → s(x)
gcd(s(x), s(y)) → if_gcd(le(y, x), s(x), s(y))
if_gcd(true, s(x), s(y)) → gcd(minus(x, y), s(y))
if_gcd(false, s(x), s(y)) → gcd(minus(y, x), s(x))

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(0, x0)
minus(s(x0), x1)
if_minus(true, s(x0), x1)
if_minus(false, s(x0), x1)
gcd(0, x0)
gcd(s(x0), 0)
gcd(s(x0), s(x1))
if_gcd(true, s(x0), s(x1))
if_gcd(false, s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
QDP
                    ↳ QDPOrderProof
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MINUS(s(x), y) → IF_MINUS(le(s(x), y), s(x), y)
IF_MINUS(false, s(x), y) → MINUS(x, y)

The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(0, y) → 0
minus(s(x), y) → if_minus(le(s(x), y), s(x), y)
if_minus(true, s(x), y) → 0
if_minus(false, s(x), y) → s(minus(x, y))
gcd(0, y) → y
gcd(s(x), 0) → s(x)
gcd(s(x), s(y)) → if_gcd(le(y, x), s(x), s(y))
if_gcd(true, s(x), s(y)) → gcd(minus(x, y), s(y))
if_gcd(false, s(x), s(y)) → gcd(minus(y, x), s(x))

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(0, x0)
minus(s(x0), x1)
if_minus(true, s(x0), x1)
if_minus(false, s(x0), x1)
gcd(0, x0)
gcd(s(x0), 0)
gcd(s(x0), s(x1))
if_gcd(true, s(x0), s(x1))
if_gcd(false, s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


IF_MINUS(false, s(x), y) → MINUS(x, y)
The remaining pairs can at least be oriented weakly.

MINUS(s(x), y) → IF_MINUS(le(s(x), y), s(x), y)
Used ordering: Combined order from the following AFS and order.
MINUS(x1, x2)  =  x1
s(x1)  =  s(x1)
IF_MINUS(x1, x2, x3)  =  x2
le(x1, x2)  =  le
false  =  false
0  =  0
true  =  true

Recursive path order with status [2].
Quasi-Precedence:
s1 > false > le
0 > false > le
0 > true > le

Status:
true: multiset
false: multiset
le: multiset
s1: [1]
0: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ DependencyGraphProof
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MINUS(s(x), y) → IF_MINUS(le(s(x), y), s(x), y)

The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(0, y) → 0
minus(s(x), y) → if_minus(le(s(x), y), s(x), y)
if_minus(true, s(x), y) → 0
if_minus(false, s(x), y) → s(minus(x, y))
gcd(0, y) → y
gcd(s(x), 0) → s(x)
gcd(s(x), s(y)) → if_gcd(le(y, x), s(x), s(y))
if_gcd(true, s(x), s(y)) → gcd(minus(x, y), s(y))
if_gcd(false, s(x), s(y)) → gcd(minus(y, x), s(x))

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(0, x0)
minus(s(x0), x1)
if_minus(true, s(x0), x1)
if_minus(false, s(x0), x1)
gcd(0, x0)
gcd(s(x0), 0)
gcd(s(x0), s(x1))
if_gcd(true, s(x0), s(x1))
if_gcd(false, s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 0 SCCs with 1 less node.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
QDP
                    ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

IF_GCD(false, s(x), s(y)) → GCD(minus(y, x), s(x))
IF_GCD(true, s(x), s(y)) → GCD(minus(x, y), s(y))
GCD(s(x), s(y)) → IF_GCD(le(y, x), s(x), s(y))

The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(0, y) → 0
minus(s(x), y) → if_minus(le(s(x), y), s(x), y)
if_minus(true, s(x), y) → 0
if_minus(false, s(x), y) → s(minus(x, y))
gcd(0, y) → y
gcd(s(x), 0) → s(x)
gcd(s(x), s(y)) → if_gcd(le(y, x), s(x), s(y))
if_gcd(true, s(x), s(y)) → gcd(minus(x, y), s(y))
if_gcd(false, s(x), s(y)) → gcd(minus(y, x), s(x))

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(0, x0)
minus(s(x0), x1)
if_minus(true, s(x0), x1)
if_minus(false, s(x0), x1)
gcd(0, x0)
gcd(s(x0), 0)
gcd(s(x0), s(x1))
if_gcd(true, s(x0), s(x1))
if_gcd(false, s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


IF_GCD(false, s(x), s(y)) → GCD(minus(y, x), s(x))
IF_GCD(true, s(x), s(y)) → GCD(minus(x, y), s(y))
The remaining pairs can at least be oriented weakly.

GCD(s(x), s(y)) → IF_GCD(le(y, x), s(x), s(y))
Used ordering: Combined order from the following AFS and order.
IF_GCD(x1, x2, x3)  =  IF_GCD(x2, x3)
false  =  false
s(x1)  =  s(x1)
GCD(x1, x2)  =  GCD(x1, x2)
minus(x1, x2)  =  x1
true  =  true
le(x1, x2)  =  le
0  =  0
if_minus(x1, x2, x3)  =  x2

Recursive path order with status [2].
Quasi-Precedence:
false > s1 > [IFGCD2, GCD2, true] > [le, 0]

Status:
true: multiset
IFGCD2: multiset
GCD2: multiset
false: multiset
le: []
0: multiset
s1: multiset


The following usable rules [14] were oriented:

if_minus(true, s(x), y) → 0
minus(s(x), y) → if_minus(le(s(x), y), s(x), y)
if_minus(false, s(x), y) → s(minus(x, y))
minus(0, y) → 0



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

GCD(s(x), s(y)) → IF_GCD(le(y, x), s(x), s(y))

The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(0, y) → 0
minus(s(x), y) → if_minus(le(s(x), y), s(x), y)
if_minus(true, s(x), y) → 0
if_minus(false, s(x), y) → s(minus(x, y))
gcd(0, y) → y
gcd(s(x), 0) → s(x)
gcd(s(x), s(y)) → if_gcd(le(y, x), s(x), s(y))
if_gcd(true, s(x), s(y)) → gcd(minus(x, y), s(y))
if_gcd(false, s(x), s(y)) → gcd(minus(y, x), s(x))

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(0, x0)
minus(s(x0), x1)
if_minus(true, s(x0), x1)
if_minus(false, s(x0), x1)
gcd(0, x0)
gcd(s(x0), 0)
gcd(s(x0), s(x1))
if_gcd(true, s(x0), s(x1))
if_gcd(false, s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 0 SCCs with 1 less node.